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Abstract 
This study evaluates the use of optical multi-spectral 

satellite data for crop type and land cover identification 

in Marathwada, India, with a specific focus on disaster 

management. The region is highly susceptible to 

various disasters including droughts and other climate-

related events that significantly impact agricultural 

productivity. The study involves analyzing both single-

date and multi-temporal satellite imagery to develop 

composite images using different band combinations, 

aiming to identify the most accurate combination for 

crop and land cover identification. A multi-class 

classification approach based on random forest is 

employed for feature extraction and the significance of 

different bands in the imagery is assessed.  

 

The results demonstrate that a composite image 

composed of Red, Green, Blue, Near Infrared and 

Shortwave Infrared bands yields the highest accuracy 

with an overall accuracy (OA) of up to 93.69% for all 

land cover classes and 91.18% for crop classes alone, 

using six-date multi-temporal imagery. The findings 

highlight the potential of optical multi-spectral satellite 

data as an effective tool for crop type and land cover 

identification in Marathwada, India, particularly in the 

context of disaster i.e. agricultural draught 

management. The methodologies and results presented 

in this study can serve as a valuable reference for 

similar research endeavors in other agricultural 

draught prone regions of India and beyond. 
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Introduction 
Agriculture serves as a vital source of direct or indirect 

income for more than two-thirds of the population in 

Maharashtra state14,24 and plays a crucial role in the Indian 

economy. However, the agricultural sector faces numerous 

challenges including the increasing frequency of disasters 

such as droughts caused by low rainfall1. India, being one of 

the most vulnerable and drought-prone countries globally, 

has experienced recurrent drought conditions over the past 
few decades15,24. In response, the Government has 

implemented various schemes to support farmers and their 

families.4,6 

Drought is a prolonged period of abnormally low rainfall 

which can have severe impacts on agricultural productivity 

and the overall ecosystem.7 It is considered one of the most 

significant agricultural disasters worldwide. Drought 

significantly affects crop production by limiting the 

availability of water, which is crucial for plant growth and 

development.19 Lack of rainfall leads to soil moisture 

deficits, resulting in water stress for crops. This water stress 

negatively impacts the physiological processes of plants 

such as photosynthesis, nutrient uptake and root 

development. Consequently, crop yields can be drastically 

reduced or even lead to crop failure.22 

 

Accurate identification of drought-affected regions and 

timely support are crucial for effective disaster management 

in agriculture. Manual surveys with their inherent limitations 

such as time consumption, potential misstatements and 

forgetfulness, often result in inaccurate records. Satellite 

image analysis has emerged as a valuable tool in various 

geographic applications including agricultural 

monitoring.2,5,10,11,13,20,21,25 This study focuses on utilizing 

satellite imagery analysis to identify major regional crops 

and other land covers in the Marathwada region of 

Maharashtra State, India, with a specific emphasis on 

enhancing agricultural draught management practices. 

 

Accurate crop identification with exceptional precision is a 

critical aspect of agricultural monitoring25. This research 

aims to improve the accuracy of crop identification by 

exploring various band combinations of optical imagery 

with high spatial, spectral and temporal resolution. 

Additionally, this study seeks to facilitate proper field 

mapping and precise crop-wise acreage estimation, 

providing indispensable tools for farmers.5 

 

Machine learning classification techniques have been 

extensively studied for satellite image segmentation. While 

maximum likelihood (ML) and support vector machine 

(SVM) algorithms have gained significant attention in 

remote sensing applications,8,16,25 the random forest (RF) 

algorithm has also demonstrated remarkable outcomes in 

land use and land cover (LULC) applications using remote 

sensing data.2,8,16,18 Furthermore, researchers have explored 

the use of neural network (NN) and convolutional neural 

network (CNN) for image classification.11,17 Despite their 

high accuracy, SVM and CNN algorithms are resource-

intensive and require a substantial number of training 

samples.11 Various optical and synthetic aperture radar 

(SAR) data such as Landsat, SPOT 5, Sentinel-2, Indian 

Remote Sensing (IRS), Radarsat and Sentinel-1, have been 
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employed for different agricultural applications including 

crop identification.9,10,20,23 

 

The use of optical multi-spectral satellite data for crop type 

and land cover identification, as explored in this study, holds 

significant promise for disaster management in the 

agricultural sector. Accurate identification of crop types and 

land covers through satellite imagery analysis can provide 

crucial information for assessing the impact of disasters such 

as droughts, floods, or storms on agricultural regions. This 

information enables timely and targeted interventions 

including resource allocation, relief measures and recovery 

planning to mitigate the adverse effects of disasters on 

farmers and their livelihoods. 

 

By leveraging classification techniques like the random 

forest algorithm and employing moderate-resolution satellite 

imagery, this research contributes to the development of a 

robust agricultural monitoring tool that can support effective 

disaster management practices. The findings and methods 

presented in this study offer valuable insights for 

policymakers, agricultural authorities and disaster 

management agencies, enabling them to make informed 

decisions and take proactive measures to reduce the 

vulnerability of agricultural systems to disasters in 

Marathwada, India and potentially in other regions facing 

similar challenges globally. 

 

Material and Methods 
Study Area and Land Cover Reference Data: The chosen 

study area is situated in the vast expanse of the Marathwada 

region in Maharashtra state, India, as depicted in figure 1. 

The study encompasses a sprawling land area of 

approximately 2,771 square kilometers. The topography of 

this region is extremely varied, comprising a range of diverse 

land features such as agricultural land, cities, villages, rivers, 

bare land and so forth. Furthermore, agriculture dominates 

the landscape of this region, playing a crucial role in the 

economic well-being of its inhabitants. 

 

To obtain accurate ground truth information, we conducted 

physical visits to various small sites distributed across the 

selected study region. Each site was given a unique name 

based on the village or region where it was located and its 

details are presented in table 1. The collected ground truth 

reference land cover data was then randomly divided into 

training and testing subsets to facilitate the implementation 

of a supervised classification algorithm with high accuracy. 

 
Image Acquisition: To gather the necessary data for this 

study, satellite images of Sentinel-2 and Landsat-8 optical 

satellites were obtained during the Rabbi season between 

December 2017 and January 2018, with spatial resolutions 

of 10m and 30m respectively. The Sentinel-2 data was 

procured from the European Space Agency (ESA) while 

Landsat-8 imagery was acquired from the U.S. Geological 

Survey (USGS).  

 

The collected data was free of clouds and underwent both 

radiometric and geometric corrections. Table 2 provides 

further details regarding the captured dates of the imagery 

utilized in this study. 

 

Table 1 

Details of the Various Sites used for Reference Land Cover Data in Selected Region 

S.N. Field No. Field Name Area in Acres 

1 2 Erandeshwar 19.03 

2 3 Barasgaon 8.40 

3 4 Limbgaon 26.71 

4 8 Sonkhed 6.91 

5 9 Vishnupuri 23.40 

6 10 Wadi Muktaji 14.04 

7 12 Vishnupuri new 20.58 

8 15 Yelgaon Ardhapur 3.66 

9 102 AK Sambhaji 7.61 

10 201 Limbgaon2 35.11 

11 202 Pimpala Lokhande 60.47 

12 203 Pimpala Lokhande 132.40 

Total 358.32 

 

Table 2 

Imagery Captured Dates from the Satellites Used for the Work 

Month and Year Landsat-8 Sentinel-2 

December 2017 - 18, 28 

January 2018 12 7, 17, 22,27 
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Figure 1: Sentinel-2 Composite RGB Image of Selected Study Region Dated 22nd January 2018 

 

In light of the land cover and agricultural patterns observed 

in the study area, we have meticulously curated 10 distinct 

classes as outlined in table 3. 

 

Additionally, the table provides insight into the allocation of 

training and testing data. The testing phase, aimed at 

evaluating the model's classification accuracy, was carried 

out on image pixels covering the aforementioned test sites. 

 

Spectral Reflectance Curve: In order to select the optimal 

band combination, it is crucial to have a thorough 

understanding of the reflectance behavior of each band 
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across different classes. This information can be obtained 

through spectral reflectance curves (SRCs) which reveal the 

reflectance values of each band for different types of land 

cover across the electromagnetic spectrum.12  

 

Sentinel-2 and Landsat-8, both multi-spectral optical 

imaging satellites, possess 13 and 11 bands respectively. A 

few spectral bands are common to both satellites such as 

Coastal aerosol (C/A), Blue (B), Green (G), Red (R), Near 

Infrared (NIR), Shortwave Infrared-1 (SWIR1) and 

Shortwave Infrared-2 (SWIR2).3 The paired bands exhibit 

closely aligned central wavelengths. Therefore, spectral 

reflectance curve (SRC) analysis for the defined classes and 

required bands is performed using the initial seven bands of 

Landsat-8 imagery from January 12th, 2018 as demonstrated 

in table 4. 

 

We have adopted the procedures outlined by Kale and 

Holambe8 for the enhancement of land use land cover 

(LULC) identification through the use of various existing 

and novel band arithmetic approaches. The development of 

spectral reflectance curve involved a series of steps as 

explained in the aforementioned study. Specifically, the 

spectral reflectance value (𝐿𝛼) was obtained using the 

following formula: 

 

𝐿𝛼 =
𝑀∗𝐷𝑁+𝛽

𝑠𝑖𝑛(𝜃)
                 (1) 

 

The mathematical formulation involves the calculation of 

spectral reflectance value (𝐿𝛼) which is determined by 

several parameters such as 𝑀 (Gain value of the band), 

𝐷𝑁(the gray-scale value of the pixel, also known as Digital 

number), 𝛽(Bias value of the band) and 𝜃 (Sun elevation 

angle). It is noteworthy that the values of 𝑀, 𝛽 and 𝜃 are not 

constant, but instead vary across different satellite images 

and are documented in the metadata file accompanying the 

respective satellite data. 

 

The pixel level of the selected area is applied to the Landsat-

8 satellite imagery dated January 12, 2018, resulting in the 

production of reflectance images (one for each band of the 

satellite imagery). To determine the reflectance value of each 

class and band, training reference data is utilized. 

 

It is observed that the pixel values for a class exhibit a wide 

range of variation in these reflectance images. Therefore, 

mean reflectance values for each class for each band are used 

which are subsequently transformed into percentage 

reflectance values to normalize all reflectance values. 

Reflectance is converted to percentage reflectance 

(%𝐿𝛼) for each class in each band using the following 

formula: 

 

%𝐿𝛼 =
(µ−𝑅𝑚𝑖𝑛)

(𝑅𝑚𝑎𝑥−𝑅𝑚𝑖𝑛)
∗ 100              (2) 

where µ is a mean pixel value of the reflectance image of a 

class calculated from the training data, 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 are 

minimum and maximum of DN values of the reflectance 

image respectively.

 

Table 3 

 Details of Reference Data (Training and Testing) from Various Sites 

Class No. Class Name Training Area No. of Test Pixels 

1 Sugarcane 8.352 65 

2 Chickpea 4.547 40 

3 Jowar 1.334 15 

4 Wheat 3.558 20 

5 Sweet Lime 16.976 150 

6 Orange 107.515 450 

7 Other Vegetation 11.293 65 

8 Bare Land 183.747 140 

9 Built-Up Area 9.612 110 

10 Water 59.157 260 

Total 406.092 1315 

 

Table 4 

Analogous Bands in Sentinel-2 and Landsat-8 Satellite Imagery 

S.N. Name of the band. Sentinel-2 

Band No. 

Landsat-8 

Band No. 

1 Coastal aerosol (C/A) Band_1 B_1 

2 Blue (B) Band_2 B_2 

3 Green (G) Band_3 B_3 

4 Red (R) Band_4 B_4 

5 Near Infrared (NIR) Band_8 B_5 

6 Shortwave Infrared 1 (SWIR1) Band_11 B_6 

7 Shortwave Infrared 2 (SWIR2) Band_12 B_7 
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The transformation of reflectance to percentage reflectance 

values involves the calculation of the mean pixel value (µ) 

of the reflectance image of a class obtained from the training 

data. To normalize the reflectance values, the minimum 

(𝑅𝑚𝑖𝑛) and maximum (𝑅𝑚𝑎𝑥) of the DN values of the 

reflectance image are also determined.  

 

Image Processing: As illustrated in figure 2, the raw 

Sentinel-2 images undergo a meticulous processing pipeline. 

In the first stage, the bands with a spatial resolution of 20m 

or 60m are re-sampled to 10m using the bi-linear 

interpolation technique. Radiometric corrections are applied 

to the imagery using the formula and SCP plug-in in the 

QGIS software. These radiometrically corrected images are 

then utilized for further processing such as the formation of 

composite images with various bands on the same date and 

multi-temporal images. The classifier random forest (RF) is 

preferred over maximum likelihood (ML) and support vector 

machine (SVM) after a thorough investigation of its 

capabilities for the research work. The appropriate bands and 

composite images with various band combinations were 

studied through comparison. 

 

The formula is employed to compute the percent reflectance 

values for all classes for the first seven bands. These values 

are plotted against the central wavelengths (in meters) of 

each band as shown in figure 3. The resultant reflectance 

curves are presented in figures 3 and 4. All the subsequent 

experiments are conducted using data from the Sentinel-2 

satellite, which provides a spatial resolution of 10 meters. 

 

 
Figure 2: Spectral Reflectance Curve Development Process 
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Figure 3: Spectral Reflectance Curve 

 

 
Figure 4: Image Processing Workflow using Sentinel-2 Imagery 
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Figure 5: Block Schematic of Image Processing 

 

The intricate image processing steps are illustrated in figure 

5. The resampled bands with a high 10m spatial resolution 

are utilized to create composite images which are 

subsequently clipped to eliminate any areas outside the 

scope of the study region. To start, a composite image 

containing all 13 bands is produced. This composite image 

is then classified using classical classifiers such as ML, RF 

and SVM with the aim of determining which one performs 

better under the given circumstances. RF is chosen as the 

classifier of choice for the remaining composite images 
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which are generated using various band combinations as 

outlined in table 5. 

 

In order to incorporate the temporal dimension into the 

analysis, composite images are generated using the 

RGB_NIR_SWIR band combinations across multiple dates. 

Specifically, time series images spanning from 2 to 6 dates 

are utilized for the multitemporal image processing with the 

specific dates outlined in table 6. 

 

Table 5 

Details of the Composite Images Prepared by Various Band Combinations. 

S.N. Acronyms Details Bands 

1 RGB 

Composite image of Red, Green and Blue 

bands 
S_Band_4, S_Band_3, S_Band_2 

2 RGB_NIR 

Composite image of Red, Green, Blue and 

NIR bands 

S_Band_4, S_Band_3, S_Band_2, 

S_Band_8 

3 RGB_NIR_SWIR 

Composite image of Red, Green, Blue, NIR 

and SWIR bands 

S_Band_4, S_Band_3, S_Band_2, 

S_Band_8, S_Band_12 

4 Std_FCC 

Standard False colour composite 

i.e.,composite image of NIR, Red and Green 

bands. 

S_Band_8, S_Band_4, S_Band_3 

5 RGB_Veg_Red_Edge 

Composite image of Red, Green, Blue and 

Veg Red Edge bands 

S_Band_4, S_Band_3, S_Band_2, 

S_Band_5, S_Band_6, S_Band_7 

6 

RGB_NIR_SWIR_ 

Veg_Red_Edge 

Composite image of Red, Green, Blue, NIR, 

SWIR and Veg Red Edge bands 

S_Band_4, S_Band_3, S_Band_2, 

S_Band_8, S_Band_12, S_Band_5, 

S_Band_6, S_Band_7 

 

 
Figure 6: Random Forest Classified Image of 6-Date Multi-Temporal Composite RGB_NIR_SWIR 
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The composite images obtained from the image processing 

pipeline are subjected to a classification process using the 

random forest (RF) algorithm along with reference training 

data. The accuracy of the classification is then evaluated 

using a separate test dataset which is essential for 

performance analysis. 

 

Results and Discussion 
Overall accuracy (OA), Producer's Accuracy (PA), User's 

Accuracy (UA) and Kappa coefficient (k) are matrices used 

for comparing the accuracy of various classification methods 

for various combinations of band composite images. In the 

realm of remote sensing, matrices such as Overall Accuracy 

(OA), Producer's Accuracy (PA), User's Accuracy (UA) and 

Kappa coefficient (k) are essential for evaluating the 

precision of different classification techniques when 

utilizing various band composite images. The first step is to 

determine the appropriate classifier suitable for the given 

classes and imagery.  

 

As demonstrated in table 7, the three classical classifiers 

(ML, RF, SVM) commonly used in remote sensing are 

implemented to assess their performance. The RF classifier's 

Kappa coefficient is relatively superior to the remaining two 

classifiers for crop cover identification, despite its OA being 

similar to that of an ML classifier. Thus, the RF classifier is 

deemed the most significant and utilized as a classification 

tool for further experimentation. 

 

In the pursuit of achieving greater accuracy, a series of 

regressive experiments were conducted to analyze minute 

changes in composite images with various bands of single 

date satellite data. The results, as presented in table 8, 

showed a significant improvement in accuracy for both 

land cover and crop identification upon inclusion of the 

NIR band with R, G and B bands. The overall accuracy of 

land cover increased from 81.75% to 86.54% while the 

crop cover increased from 78.14% to 82.36%. Further 

improvements were observed with the inclusion of the 

SWIR band, resulting in an overall accuracy of 87.38% 

and 82.36% for land cover and crop cover respectively.  

 

A standard false colour composite (Std_FCC) image was 

also prepared, classified and its accuracy was observed to 

have reduced to 78.56%. An experiment was carried out 

using a composite image with the combination of 

vegetation red edge bands with RGB 

(RGB_Veg_Red_Edge) but the accuracy was found to be 

comparatively lower than the RGB_NIR_SWIR 

combination.  
 

 

Table 6 

Details of Image Acquisition in Various Multi-Temporal Composite Image of RGB_NIR_SWIR Satellite Imagery 

Multi-temporal Images December 2017 January 2018 

2 Dates - 17, 22 

3 Dates - 17, 22, 27 

4 Dates - 7, 17, 22, 27 

5 Dates 28 7, 17, 22, 27 

6 Dates 18, 28 7, 17, 22, 27 

 

Table 7 

Accuracy Analysis Among the Various Classifiers using Composite Image from All 13-Bands of the Pre-Processed 

Reflectance Imagery of Sentinel-2 Dated 22nd January 2018. 

  

ML RF SVM 

PA UA PA UA PA UA 

1. Sugarcane 93.846 87.143 90.769 81.944 70.769 95.833 

2. Chickpea 87.5 79.545 70 80 70 59.574 

3. Jowar 46.667 87.5 80 75 66.667 55.556 

4. Wheat 60 52.174 95 76 75 65.217 

5. Sweet Lime 74.667 74.172 72.667 71.711 81.333 72.619 

6. Orange 90.222 89.427 92.889 89.126 90.667 91.275 

7. Other Vegetation 92.308 74.074 73.846 72.727 95.385 72.941 

8. Bare Land 81.429 100 80.714 100 80 99.115 

9. Built-Up Area 100 97.345 99.091 100 99.091 100 

10. Water 98.846 100 98.846 99.612 98.846 100 

 OA (Land Cover) 89.278 89.125 88.897 

Kappa (Land Cover) 0.867 0.865 0.863 

 OA (Only Crop Cover) 86.087 86.087 85.839 

Kappa (Only Crop Cover) 0.748 0.771 0.74 
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Thus, the RGB_NIR_SWIR with vegetation red edge bands 

was prepared, resulting in an 8-band composite image 

named RGB_NIR_SWIR_Veg_Red_Edge which was 

classified with an accuracy of 86.16%. The combination of 

RGB_NIR_SWIR (5 bands) outperformed all other 

combinations in the single date imagery with accuracy 

values of 87.38% and 82.36% and Kappa coefficient values 

of 0.843 and 0.728 for complete land cover and crop 

identification respectively. Therefore, for further 

experimentation using multi-temporal data, the composite of 

bands RGB_NIR_SWIR is selected as the optimal 

combination. 

 

In an endeavor to further enhance the accuracy of land and 

crop identification, a meticulous investigation is 

conducted by processing date-wise time-series satellite 

data with the desired band combination. The changes in 

accuracy and Kappa coefficient for the given classes are 

presented in table 9 and the details of the dates of image 

acquisition used for the study are mentioned in table 6. By 

employing the RGB_NIR_SWIR band combination, the 

overall accuracy of land cover improves from 87.38% of 

single date imagery to an impressive 93.69% for the six-

date multi-temporal data.

Table 8  

Comparison between RF Classified Images with Various Band Combination of Single Date Image of Sentinel-2 

Imagery Dated 22nd January 2018. 

  RGB RGB_NIR RGB_NIR_S

WIR 

Std_FCC RGB_Veg_Re

d_Edge 

RGB_NIR_SWI

R_VegRedEdge 

PA UA PA UA PA UA PA UA PA UA PA UA 

1. Sugarcane 73.87 73.85 70.77 85.19 81.54 79.10 53.85 56.45 72.31 71.21 78.46 75 

2. Chickpea 70 66.67 80 61.54 85 66.67 45 52.94 72.5 76.32 77.5 75.61 

3. Jowar 53.33 88.89 53.33 88.89 60 90 53.33 88.89 13.33 25 20 75 

4. Wheat 55 39.29 85 70.83 80 69.57 75 41.67 75 51.72 85 56.667 

5. Sweet Lime 58.67 61.54 72.67 63.01 66.67 63.29 61.33 43.60 70.67 67.09 64.67 64.667 

6. Orange 91.79 86.22 90 90.81 91.78 90.97 77.33 87.22 92 87.16 92.22 88.865 

7. Other 

Vegetation 

50.77 38.82 67.69 57.14 58.46 59.38 56.92 45.68 64.62 60 61.54 56.338 

8. Bare Land 76.43 100 80 98.25 85.71 99.17 82.86 97.48 74.29 96.30 82.14 96.639 

9. Built-Up Area 99.09 100 98.18 100 99.09 100 97.27 100 95.46 100 97.27 99.074 

10. Water 88.46 92.74 98.85 99.61 98.85 99.61 98.85 100 98.08 98.84 98.85 100 

OA (Land Cover) 81.75 86.54 87.38 78.56 85.10 86.16 

Kappa  

(Land Cover) 

0.773 0.833 0.843 0.737 0.814 0.828 

OA (Only Crop 

Cover) 

78.14 82.11 82.36 68.67 81.37 81.242 

Kappa (Only 

Crop Cover) 

0.65 0.711 0.728 0.498 0.69 0.697 

 

Table 9 

Comparison between RF Classified Composite Images of RGB_NIR_SWIR Combination Using Time Series Multi-

Temporal Data of Sentinel-2 

  
2 Dates 3 Dates 4 Dates 5 Dates 6 Dates 

PA UA PA UA PA UA PA UA PA UA 

1. Sugarcane 95.39 81.58 95.39 77.5 96.92 77.78 98.46 73.56 96.92 79.75 

2. Chickpea 77.5 73.81 70 82.35 52.5 80.77 57.5 82.14 57.5 82.14 

3. Jowar 33.33 71.43 40 85.71 33.33 83.33 60 90 40 100 

4. Wheat 95 67.86 95 57.58 95 50 100 80 95 57.58 

5. Sweet Lime 80 68.977 81.33 72.62 94.67 88.20 88.67 85.81 92 88.46 

6. Orange 89.78 92.45 90.22 92.27 94 97.47 95.33 96.19 96 97.74 

7. Other Vegetation 72.31 71.21 70.77 75.41 76.92 70.42 81.54 76.81 81.54 75.71 

8. Bare Land 83.57 100 88.57 97.64 90.71 97.69 87.14 98.39 93.57 98.50 

9. Built-Up Area 99.09 100 97.27 100 97.27 100 98.18 100 98.18 100 

10. Water 99.23 99.61 99.23 100 99.62 99.23 99.62 98.48 99.62 99.62 

 OA (Land Cover) 89.13 89.58 92.47 92.78 93.69 

Kappa (Land Cover) 0.866 0.871 0.907 0.91 0.922 

 OA (Only Crop Cover) 85.47 85.59 89.81 90.81 91.18 

Kappa (Only Crop Cover) 0.769 0.774 0.846 0.855 0.863 
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From table 9, it is manifestly apparent that an increase in 

date-wise data results in an improved overall accuracy 

and Kappa value for both the complete land cover and 

crop cover. 

 

Notwithstanding, there are a few noteworthy exceptions 

to the general trend. It has been observed that certain 

classes exhibit optimal classification accuracy at different 

stages of multi-temporal data. For instance, the sugarcane 

class demonstrates its highest accuracy of 98.46% with 5-

date composite satellite data, but this decreases to 96.92% 

with 6-date satellite imagery.  

 

Conversely, the chickpea class exhibits a decreasing trend 

in accuracy with the addition of multi-temporal data, 

declining from 85% (single date) to 57.5% (6 dates). On 

the other hand, the jowar and wheat classes both exhibit 

their best accuracy with 5-date imagery at 60% and 100% 

respectively. 

 

Through empirical investigation, several factors have 

been examined in this comprehensive experimentation. It 

has been observed that different classes exhibit varying 

degrees of improvement or deterioration in accuracy as 

the time-series satellite data increases. This is due to the 

changing patterns in the crops as they grow, which affects 

their discrimination from other classes over time. It has 

been noted that certain classes contribute to the 

improvement in accuracy while others contribute to an 

increase in miss-classification. 

 

In the realm of disaster management, the evaluation of 

optical multi-spectral satellite data for crop type and land 

cover identification holds significant potential for 

mitigating the impact of natural disasters on agriculture. 

Natural disasters, such as droughts, floods and storms, can 

cause severe damage to crops and disrupt the agricultural 

landscape. By utilizing satellite imagery analysis, this 

research aims to provide critical information on the extent 

and severity of crop damage caused by such disasters. 

Accurate identification of crop types and land covers in 

disaster-affected areas can help authorities assess the 

magnitude of the crisis, plan response strategies and 

allocate resources effectively.  

 

Additionally, the use of multi-temporal satellite data 

enables the monitoring of crop recovery and the 

evaluation of long-term effects on agricultural landscapes. 

This information is vital for implementing targeted 

interventions, facilitating early warning systems and 

supporting the development of resilient agricultural 

systems that can better withstand and recover from 

disasters.  

 

Ultimately, the integration of optical multi-spectral 

satellite data in disaster management practices can 

contribute to minimizing the adverse effects of natural 

disasters on agriculture, ensuring food security and 

safeguarding the livelihoods of farmers in vulnerable 

regions like Marathwada, India. 

 

Conclusion 
The study investigated the impact of multi-temporal data on 

land cover and crop classification accuracy using different 

combinations of spectral bands and classifiers. The results 

showed that the combination of RGB, NIR and SWIR bands 

performed the best in both single-date and multi-temporal 

data, with an overall accuracy of 87.38% for land cover and 

82.36% for crop cover. The use of multi-temporal data 

improved the overall accuracy of land cover classification to 

93.69%. However, the accuracy of some classes varied at 

different stages of multi-temporal data, indicating that the 

discrimination of changing patterns of crops over time was 

challenging.  

 

The study highlights the importance of considering the 

appropriate combination of spectral bands and classifiers in 

land cover and crop classification. Furthermore, the use of 

multi-temporal data improves the accuracy of land cover 

classification. The findings of this study could be useful in 

land management, resource planning and decision-making, 

particularly in agriculture and land-use planning. Further 

research could explore the use of more advanced techniques 

such as deep learning algorithms in land cover and crop 

classification. 

 

Our research has shown that random forest outperforms 

maximum likelihood classifier and support vector machine 

for crop identification. Standard false colour composite 

image resulted in less accuracy as compared to other band 

combinations used in the study. The combination of bands 

R, G, B, NIR and SWIR gave the best accuracy for both land 

cover and crop cover identification. However, the results of 

the crop classes varied with the use of multi-temporal data. 

Some classes gave better results for single date or two-date 

imagery while others showed improvement with increased 

time-series satellite data.  

 

The growth cycle of each class was found to be a 

contributing factor to this variation. Future studies focusing 

on the individual class identification using binary 

classification may provide enhanced results. This research 

attempted to identify the most appropriate bands for the 

given classes of land cover, resulting in increased accuracy 

while reducing computational burden. 

 

The findings of this study have implications for disaster 

management. By utilizing optical multi-spectral satellite 

data, accurate and timely information about the extent and 

impact of disasters on crop types and land cover can be 

obtained.  

 

This data can assist in assessing damage, identifying 

vulnerable areas and facilitating targeted relief efforts. The 
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ability to quickly identify changes in land cover and crop 

patterns using satellite imagery contributes to early warning 

systems and proactive disaster management strategies. This 

study highlights the role of optical multi-spectral satellite 

data in enabling more efficient decision-making to mitigate 

the impact of disasters on agriculture and land resources. 
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